Solutions Chapter 3

Exercise 3.1

a. PV of withdrawals = $4,000^{(1 - 1/1.06^{6})}/0.06 = 19,669.30$. FV = $(20,000 - 19,669.30)^{1.06^{6}} = 469.11$.

b. PV at end year 2 of withdrawals = $4,000^{(1 - 1/1.06^{6})}/0.06 = 19,669.30$. PV today = $19,669.30/1.06^{2} = 17,505.61$. FV = $(20,000 - 17,505.61)^{1.06^{8}} = 3,975.68$.

Or $20,000^{1}.06^{2} = 22,472 = FV$ one year before first withdrawal. $(22,472 - 19,669.30)^{1}.06^{6} = 33,975.68$.

Exercise 3.2

PV of 20 withdrawals = $12,000^{(1 - 1/1.06^{20})}/0.06 = 137,639.05$. This is the amount the fund must hold one year before the first withdrawal. Using [4] we set the FV of the 15 deposits equal to this amount.

 $D^{(1.06)^{15} - 1}/0.06 = 137,639.05.$ D = 137,639.05/23.276 = 5,913.35.

Exercise 3.3

a. \$25*(1.015)⁵ = \$26.932m. b. PV = \$26.932/(0.06 - 0.015) = \$598.49m.